Spatial facilitation by a high-performance dragonfly target-detecting neuron

نویسندگان

  • Karin Nordström
  • Douglas M. Bolzon
  • David C. O'Carroll
چکیده

Many animals visualize and track small moving targets at long distances-be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below the resolution limit of the eye. Many STMDs also respond robustly to small targets against complex stationary or moving backgrounds. We hypothesized that this requires a complex mechanism to avoid breakthrough responses by background features, and yet to adequately amplify the weak signal of tiny targets. We compared responses of dragonfly STMD neurons to small targets that begin moving within the receptive field with responses to targets that approach the same location along longer trajectories. We find that responses along longer trajectories are strongly facilitated by a mechanism that builds up slowly over several hundred milliseconds. This allows the neurons to give sustained responses to continuous target motion, thus providing a possible explanation for their extraordinary sensitivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths

Dragonflies detect and pursue targets such as other insects for feeding and conspecific interaction. They have a class of neurons highly specialized for this task in their lobula, the "small target motion detecting" (STMD) neurons. One such neuron, CSTMD1, reaches maximum response slowly over hundreds of milliseconds of target motion. Recording the intracellular response from CSTMD1 and a secon...

متن کامل

Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.

Visual identification of targets is an important task for many animals searching for prey or conspecifics. Dragonflies utilize specialized optics in the dorsal acute zone, accompanied by higher-order visual neurons in the lobula complex, and descending neural pathways tuned to the motion of small targets. While recent studies describe the physiology of insect small target motion detector (STMD)...

متن کامل

Flight Control in the Dragonfly: A Neurobiological Simulation

Neural network simulations of the dragonfly flight neurocontrol system have been developed to understand how this insect uses complex, unsteady aerodynamics. The simulation networks account for the ganglionic spatial distribution of cells as well as the physiologic operating range and the stochastic cellular fIring history of each neuron. In addition the motor neuron firing patterns, "flight co...

متن کامل

The effect of spatial frequency on peripheral collinear facilitation

The detection of a Gabor patch (target) can be decreased or improved by the presence of co-oriented Gabor patches (flankers) having the same spatial frequency as the target. These phenomena are thought to be mediated by lateral interactions. Depending on the distance between target and flankers, commonly defined as a multiple of the wavelength (λ) of the carrier, flankers can increase or decrea...

متن کامل

Ethanol impairs memory by reducing the synaptic connection of the hippocampal spatial neurons

Background and Objective: Ethanol has undesirable effects on memory and synaptic communication. However, its impact on the learned spatial memory is unclear. We investigated the damaging effects of ethanol on place neurons of rat’s hippocampal CA1.Materials and Methods: Sixty four male Wistar rats (250 g) were administered high (1-8 g/kg) or low (0.05-0.1 g/kg) doses of ethanol intraperit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011